Python code for a simple neural network.
import numpy as np
########### Single Layer Neuron with FF Learning (AND, OR, NAND)
class basic_NN:
def __init__(self,iv,ov,it=20):
self.input_vector = np.array(iv)
self.output_vector = np.array(ov)
self.weight_vector = np.array([[2,3,-1]]) ### Any random weights
self.output = np.array([])
self.err_vector = np.zeros((1,3))
self.eta = 0.3
self.iterations = it
def compute(self):
mfv = np.c_[np.ones(4),self.input_vector]
for i in range(0,self.iterations):
self.result = mfv.dot(self.weight_vector.transpose())
self.output = [0 if result < 0 else 1 for result in self.result]
print("output after ",i," iterations : ",self.output)
self.weight_vector = self.update_weight(mfv)
def update_weight(self,wv):
sum = 0
for i in range(self.output_vector.size):
sum = sum + (self.output[i]-self.output_vector[i])*wv[i]
updated_weight = self.weight_vector - self.eta*sum
return updated_weight
def show_result(self):
print("Input Vector : \n",self.input_vector)
print("Output : \n",self.output)
def get_output(self):
return self.output
########### End of basic_NN
###### As AND
n = basic_NN(np.array([[0,0],[0,1],[1,0],[1,1]]),np.array([0,0,0,1]))
n.compute()
n.show_result()
import numpy as np
########### Single Layer Neuron with FF Learning (AND, OR, NAND)
class basic_NN:
def __init__(self,iv,ov,it=20):
self.input_vector = np.array(iv)
self.output_vector = np.array(ov)
self.weight_vector = np.array([[2,3,-1]]) ### Any random weights
self.output = np.array([])
self.err_vector = np.zeros((1,3))
self.eta = 0.3
self.iterations = it
def compute(self):
mfv = np.c_[np.ones(4),self.input_vector]
for i in range(0,self.iterations):
self.result = mfv.dot(self.weight_vector.transpose())
self.output = [0 if result < 0 else 1 for result in self.result]
print("output after ",i," iterations : ",self.output)
self.weight_vector = self.update_weight(mfv)
def update_weight(self,wv):
sum = 0
for i in range(self.output_vector.size):
sum = sum + (self.output[i]-self.output_vector[i])*wv[i]
updated_weight = self.weight_vector - self.eta*sum
return updated_weight
def show_result(self):
print("Input Vector : \n",self.input_vector)
print("Output : \n",self.output)
def get_output(self):
return self.output
########### End of basic_NN
###### As AND
n = basic_NN(np.array([[0,0],[0,1],[1,0],[1,1]]),np.array([0,0,0,1]))
n.compute()
n.show_result()
###### As OR
n = basic_NN(np.array([[0,0],[0,1],[1,0],[1,1]]),np.array([0,1,1,1]))
n.compute()
n.show_result()
###### As NAND
n = basic_NN(np.array([[0,0],[0,1],[1,0],[1,1]]),np.array([1,1,1,0]))
n.compute()
n.show_result()
### xor NN
### Using basic NN for or, nand and and
### a xor b = (a or b) and (a nand b)
### or and nand in the first layer, and in the second layer
class xor_NN:
def __init__(self,iv,ov):
self.input_vector = np.array(iv)
self.output_vector = np.array(ov)
self.output = np.array([])
def compute(self):
or_neuron = basic_NN(self.input_vector,np.array([0,1,1,1]))
nand_neuron = basic_NN(self.input_vector,np.array([1,1,1,0]))
or_neuron.compute()
nand_neuron.compute()
h1 = or_neuron.get_output()
h2 = nand_neuron.get_output()
h = np.concatenate((h1,h2))
iv_l2= h.reshape(4,2)
and_neuron = basic_NN(iv_l2,self.output_vector)
and_neuron.compute()
self.output = and_neuron.get_output()
def show_result(self):
print("Input Vector : \n",self.input_vector)
print("Output : \n",self.output)
def get_output(self):
return self.output
n = xor_NN(np.array([[0,0],[0,1],[1,0],[1,1]]),np.array([0,1,1,0]))
n.compute()
n.show_result()
No comments:
Post a Comment